(Polymers Program, Division of Materials Research). Thanks are also due the Dow Corning Corp., for the PDMS samples and for the sabbatical leave granted to J.R.F.

References and Notes

(1) (a) University of Michigan. (b) University of Michigan. (c) University of Cincinnati.
(2) P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, Ithaca, N.Y., 1953.
(3) L. R. G. Treloar, "The Physics of Rubber Elasticity", 3rd ed., Clarendon Press, Oxford, 1975.
(4) B. E. Eichinger, Macromolecules, 5, 496 (1972).
(5) W. W. Graessley, Macromolecules, $8,186,865$ (1975).
(6) G. Ronca and G. Allegra, J. Chem. Phys., 63, 4990 (1975).
(7) K. J. Smith, Jr., and R. J. Gaylord, J. Polym. Sci., Polym. Phys. Ed., 13, 2069 (1975).
(8) P. J. Flory, Proc. R. Soc. London, Ser. A, 351351 (1976).
(9) R. T. Deam and S. F. Edwards, Philos. Trans. R. Soc. London, Ser. A, 280, 317 (1976).
(10) P. J. Flory, J. Chem. Phys., 66, 5720 (1977).
(11) P. J. Flory, Macromolecules, 12, 119 (1979).
(12) D. J. Walsh, G. Allend, and G. Ballard, Polymer, 15, 366 (1974); G. Allen, P. A. Holmes, and D. J. Walsh, Faraday Discuss. Chem. Soc., 57, 19 (1974); G. Allen, P. L. Egerton, and D. J. Walsh, Polymer, 17, 65 (1976); J. R. Falender, G. S. Y. Yeh, and J. E. Mark, J. Chem. Phys., 70, 5324 (1979).
(13) J. E. Mark and J. L. Sullivan, J. Chem. Phys., 66, 1006 (1977).
(14) E. M. Valles and C. W. Macosko in "Chemistry and Properties of Crosslinked Polymers'", S. S. Labana, Ed., Academic Press, New York, 1977.
(15) J. E. Herz, P. Rempp, and W. Borchard, Adv. Polym. Sci., 26, 105 (1978), and pertinent references cited therein.
(16) L. M. Dossin and W. W. Graessley, Macromolecules, 12, 123 (1979).
(17) J. E. Mark, R. R. Rahalkar, and J. L. Sullivan, J. Chem. Phys., 70, 1794 (1979).
(18) J. E. Mark, Macromol. Rev., 11, 135 (1976).
(19) R. C. Smith, N. C. Angelotti, and C. L. Hanson in "'Analysis of Silicones", A. L. Smith, Ed., Wiley-Interscience, New York, 1974.
(20) W. T. Grubb and R. C. Osthoff, J. Am. Chem. Soc., 77, 1405 (1955).
(21) J. C. Saam and F. W. G. Fearon, U.S. Patent 3678125 (1972).
(22) A. Chapiro, "Radiation Chemistry of Polymeric Systems", Wiley-Interscience, New York, 1962.
(23) M. L. Dunham, D. L. Bailey, and R. Y. Mixer, Ind. Eng. Chem., 49, 1373 (1957).
(24) P. G. Bork and C. W. Roush in "Vulcanization of Elastomers", G. Alliger and I. J. Sjothun, Eds., Reinhold, New York, 1964.
(25) A. J. Chalk and J. F. Harrod, J. Am. Chem. Soc., 87, 16 (1965).
(26) J. E. Mark, J. Am. Chem. Soc., 92, 7252 (1970).
(27) T.-K. Su and J. E. Mark, Macromolecules, 10, 120 (1977).
(28) J. E. Mark and P. J. Flory, J. Appl. Phys., 37, 4635 (1966).
(29) J. E. Mark, Rubber Chem. Technol., 48, 495 (1975).
(30) P. F. Flory and Y. Tatara, J. Polym. Scl., Polym. Phys. Ed., 13, 683 (1975).
(31) M. Mooney, J. Appl. Phys., 19, 434 (1948); R. S. Rivlin, Philos. Trans. R. Soc. London, Ser. A, 241, 379 (1948).
(32) Very similar results were obtained when the segregated groups were placed at approximately every sixth unit at the ends of the chains (J. R. Falender, manuscript in preparation). This indicates that the vinyl-Si $\left[\mathrm{OS}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{H}\right]_{4}$ cross-linking reaction is not very significantly affected by vinyl-vinyl proximity effects.
(33) C. U. Yu and J. E. Mark, Polym. J., 7, 101 (1975).
(34) M. A. Llorente and J. E. Mark, J. Chem. Phys., 71, 682 (1979).
(35) The preliminary results published previously [Polym. Prepr., 19, 743 (1978)] were calculated using swelling equation parameters now thought to be less appropriate than those used in the present analysis.

Dependence of Bond Angles upon the Steric Effect. 1. XMX Bond Angles

Marvin Charton
Contribution from the Chemistry Department, Pratt Institute, Brooklyn, New York 11205. Received June 4, 1979

Abstract

Bond angles $\mathrm{X}-\mathrm{M}-\mathrm{X}$ in tetrahedral and trigonal planar species are generally dependent on steric effects. This is shown by the success of correlations with the equation $1 / \sin \left(\theta_{\mathrm{X}} / 2\right)=b_{0}\left(1 / r_{\mathrm{VX}}\right)+b_{1}$, where $\theta_{\mathrm{X}}=\angle \mathrm{XMX}$ and r_{VX} is the van der Waals radius of X , and $1 / \sin \left(\theta_{\mathrm{X}} / 2\right)=d_{1} r_{\mathrm{VM}}+d_{0}$, where r_{VM} is the van der Waals radius of M . The correlation equations are useful for the prediction of bond angles. H atoms bonded to O, N, or C do not fit the steric effect model. Groups X capable of $\mathrm{d} \pi-\mathrm{p} \pi$ bonding also do not fit the model.

The valence shell electron pair repulsion (VSEPR) theory has been very widely used in the prediction of the shape of a chemical species on the basis of repulsions between electron pairs. ${ }^{1}$ The theory does not successfully account for the deviation of the observed bond angles in many compounds from the predicted geometry. These deviations, although small, are experimentally significant. According to VSEPR theory, they are due to the electronegativity of the substituents attached to the central atom. Searcy has attempted to predict bond angles from an electrostatic model. ${ }^{2}$

An alternative viewpoint has been presented ${ }^{3}$ which suggests that in many cases the observed bond angles can be accounted for by interactions between nonbonded atoms. This proposal has been criticized by Wilson ${ }^{4}$ on the grounds that equally good predictions in the case of trigonal planar carbon compounds could be made by simply assuming average values for the bond angles. Nonbonded interactions have been used recently to account for the geometry of a number of species. In this work we present evidence based on a very simple model which suggests that generally bond angles are determined by steric effects (nonbonded atom repulsions).

Consider the structural fragment $\mathrm{X}^{1}-\mathrm{M}-\mathrm{X}^{2}$ shown in Figure 1 , where $X^{1}=X^{2}, X$ is some atom or group of atoms, and M
is a central atom to which the two X groups are bonded. If the bond angle is determined by the size of the X group, the two X groups will be in contact, and the distance $\overline{\mathrm{XA}}$ from the X nucleus to the point A at which the X groups are in contact will be equal to the van der Waals radius of X if X is monatomic. If X is polyatomic, the distance $\overline{\mathrm{XA}}$ will be from the group center to the point in contact and will be given by the group van der Waals radius, r_{VX}. The distance $\overline{\mathrm{XM}}$ is simply the XM bond length. As triangles $\mathrm{X}^{1} \mathrm{AM}$ and $\mathrm{X}^{2} \mathrm{AM}$ are congruent, angle $\mathrm{X}^{2} \mathrm{MA}$ is equal to angle $\mathrm{X}^{1} \mathrm{MA}$ and designating angle $\mathrm{X}^{1} \mathrm{MX}^{2}$ as θ

$$
\begin{equation*}
\mathrm{X}^{1} \mathrm{MA}=\theta_{\mathrm{X}} / 2 \tag{1}
\end{equation*}
$$

Then

$$
\begin{gather*}
r_{\mathrm{VX}}=l_{\mathrm{MX}} \sin \left(\theta_{\mathrm{X}} / 2\right) \tag{2}\\
1 / \sin \left(\theta_{\mathrm{X}} / 2\right)=l_{\mathrm{MX}} / r_{\mathrm{VX}} \tag{3}
\end{gather*}
$$

We may write

$$
\begin{equation*}
l_{\mathrm{MX}}=r_{\mathrm{CM}}+r_{\mathrm{CX}} \tag{4}
\end{equation*}
$$

where r_{CM} and r_{CX} are the covalent radii of M and X , respectively. We have shown elsewhere ${ }^{5}$ that as suggested by

Table I. Results of Correlations with Equations 8, 9, and 15

set	b_{0} or C_{1}	b_{1} or G	r^{a}	$F^{\text {b }}$	$s_{\text {est }}{ }^{\text {c }}$	$s_{b 0}{ }^{\text {c }}$	$s_{b_{1}{ }^{\text {c }}}$	$100 r^{2 d}$	n^{e}
015	1.00	-0.349	0.9814	157.1	0.0488	0.0798	0.131	96.32	8
1	0.590	0.872	0.9680	89.40	0.0139	0.0624	0.0326	93.71	8
2	0.268	1.169	0.9727	87.86	0.0118	0.0286	0.0153	94.62	7
3	0.230	1.211	0.9318	$19.78{ }^{8}$	0.0154	0.0518^{h}	0.0307	86.83	5
13	0.377	1.011	0.9159	$20.83{ }^{8}$	0.0289	0.0826^{i}	0.0455	83.89	6
14	0.267	1.151	0.9781	110.3	0.00698	0.0254	0.0158	95.66	7
15	0.255	1.176	0.9909	217.0	0.00518	0.0173	0.0106	98.19	6
16	0.254	1.186	0.9978	916.6	0.00251	0.00838	0.00514	99.57	6
21	0.328	1.114	0.9644	39.92^{j}	0.0151	0.0519^{j}	0.0326	93.01	5
22	0.285	1.184	0.9164	10.49 m	0.00924	0.0881^{m}	$0.0524{ }^{j}$	83.98	4
31	0.336	1.069	0.8509	5.249^{k}	0.0154	0.147^{1}	0.0872^{j}	72.41	4
32	0.410	1.033	0.7947	6.855 m	0.0178	0.157 m	0.0935	63.15	6
33	0.423	0.949	0.9184	$10.78{ }^{\text {m }}$	0.0188	0.129 m	$0.0749{ }^{\text {j }}$	84.35	4
34	0.317	1.022	0.9633	90.15	0.00620	0.0334	0.0189	92.79	9
35	0.444	0.933	0.9572	$21.86^{\text {h }}$	0.0138	$0.0949{ }^{\text {h }}$	0.0552^{j}	91.62	4
36	0.149	1.128	0.9401	$30.43{ }^{j}$	0.00432	0.0269 ${ }^{\text {j }}$	0.0151	88.38	6
151	0.150	1.113	0.9540	30.418	0.00586	$0.027{ }^{\text {n }}$	0.0512	91.02	5
152	0.376	0.636	0.9970	496.4	0.00569	0.0169	0.0290	99.40	5
153	0.207	0.960	0.9958	357.5	0.00387	0.0110	0.1090	99.17	5
154	0.291	0.781	0.9910	164.6	0.00802	0.0227^{j}	0.0393	98.21	5
155	0.440	0.486	0.9744	56.34	0.0225	0.0586^{j}	0.103^{n}	94.94	5
156	0.320	0.716	0.9972	177.6^{h}	0.00170	0.0240^{h}	0.0444^{h}	99.44	3
157	0.270	0.802	0.9890	44.55 m	0.00286	0.0404 m	$0.0748{ }^{\text {m }}$	97.80	3
161	0.229	0.819	0.9972	534.8	0.00458	0.00992	0.0176	99.44	5

${ }^{a}$ Correlation coefficient. ${ }^{b} \mathrm{~F}$ test for significance of correlation. The superscript indicates the confidence level (CL). No superscript indicates a CL of 99.9%. ${ }^{c}$ Standard errors of the estimate, b_{0}, and b_{1}. The superscript indicates CL of the Student's t test for the significance of the coefficient. No superscript signifies CL of 99.9%. ${ }^{d}$ The percent of the variance of the data accounted for by the correlation equation. ${ }^{e}$ The number of points in the set. ${ }^{f}$ For set $01, b_{0}$ is C_{1}, b_{1} is $C_{0} .{ }^{8} 97.5 \% \mathrm{CL} .{ }^{h} 95.0 \% \mathrm{CL} .{ }^{i} 98.0 \% \mathrm{CL} .{ }^{j} 99.0 \% \mathrm{CL} .{ }^{k}<90.0 \% \mathrm{CL} .{ }^{l} 80.0 \% \mathrm{CL} .{ }^{m} 90.0 \%$ CL. ${ }^{n} 98.0 \%$ CL.

Table II. Values of r_{V} and r_{A}

X	r_{V}	$r_{\text {A }}{ }^{q}$	X	r_{v}	$r_{\text {A }}{ }^{q}$	X	r_{V}	M	rv
H	1.20°	0.85	SiH_{3}	$1.90{ }^{\circ}$	1.55	SCN	$2.09{ }^{\text {h }}$	0	$1.52^{\text {a }}$
F	$1.47{ }^{\text {a }}$	1.12	SiMe_{3}	$2.60{ }^{\circ}$	2.25	NMe_{2}	$1.63{ }^{\text {i }}$	S	$1.80{ }^{\text {a }}$
Cl	$1.75{ }^{\text {a }}$	1.40	GeH_{3}	$1.92{ }^{\text {e }}$	1.57	PF_{2}	$1.84{ }^{j}$	Se	$1.90{ }^{\text {a }}$
Br	$1.85{ }^{\text {a }}$	1.50	OCF_{3}	2.19 f	1.84	OPh	1.77 k	Te	$2.06{ }^{\text {a }}$
I	$1.98{ }^{\text {a }}$	1.63	SCF_{3}	$2.62{ }^{\text {f }}$	2.27	1-aziridinyl	1.59 '	N	$1.55{ }^{\text {a }}$
Me	$1.72{ }^{\text {b }}$	1.37	SCCl_{3}	$2.91{ }^{f}$	2.56	NH_{2}	$1.55{ }^{\text {m }}$	P	$1.80^{\text {a }}$
Et	$1.76{ }^{\text {c }}$	1.41	ClO_{3}	$2.18{ }^{\text {e }}$	1.83	OMe	$1.56{ }^{n}$	As	$1.85{ }^{\text {a }}$
CF_{3}	$2.11{ }^{\text {b }}$	1.76	CN	1.60^{a}	1.25	OEt	$1.68{ }^{n}$	Sb	1.90°
$\mathrm{SO}_{3}{ }^{-}$	$2.19^{\text {b }}$	1.84	$\mathrm{C}_{2} \mathrm{H}$	$1.78{ }^{\text {a }}$	1.43	$\mathrm{OCH}=\mathrm{CH}_{2}$	$1.76{ }^{\text {k }}$	Bi	$1.87{ }^{p}$
$\mathrm{SO}_{2} \mathrm{~F}$	$2.19{ }^{\text {d }}$	1.84	SMe	1.84 g		$\mathrm{PO}_{3}{ }^{2-}$	$2.24{ }^{\text {e }}$		

${ }^{a}$ Bondi, A. J. Phys. Chem. 1964, 68, 441. ${ }^{b}$ Charton, M. J. Am. Chem. Soc. 1969, 91, 615. $r_{\mathrm{V}, \min } \perp$ values. ${ }^{c}$ From $v_{\mathrm{X}}=r_{\mathrm{vx}}-1.20$ (see eq 18) and v_{Et} reported in Charton, M. J. Am. Chem. Soc. 1975, 97, 1552. ${ }^{d}$ Assumed equal to $r_{v,} \mathrm{SO}_{3}$ - as the two groups are essentially isosteric. ${ }^{e}$ Calculated $r_{\mathrm{V}, \text { min }} \perp$ values as described in footnote $b . f$ Calculated from the extended branching equation and eq $18 ;$ Charton, M. Abstracts, 1st Conference on Correlation Analysis in Organic Chemistry, Assisi, 1979. 8 From eq 18 and vSMe reported in Charton, M.; Charton, B. 1. J. Org. Chem. 1978, 43, 1161. ${ }^{h}$ From the v value of $\mathrm{CH}_{2} \mathrm{CN}$ and eq $18 . \mathrm{SCN}$ and $\mathrm{CH}_{2} \mathrm{CN}$ are assumed to be isosteric. ${ }^{i}$ From eq 18 and $v_{\mathrm{NMe}_{2}}$ reported in Charton, M. J. Org. Chem. 1977, 42, 3535. ${ }^{j}$ The value must lie between $r_{\mathrm{V}, \mathrm{PH}}^{2}$ and $r_{\mathrm{V}, \mathrm{PM} \mathrm{P}_{2}}$. We have shown elsewhere that for $\mathrm{X}=\mathrm{MH}_{n}(\mathrm{lp})_{3-n}$ where $n=1$ or $2, r_{\mathrm{VX}}=r_{\mathrm{VM}}(\mathrm{eq} 19) . r_{\mathrm{V}, \mathrm{MNe}_{2}}-r_{\mathrm{V}, \mathrm{NH}_{2}}=0.08$. Assuming that the effect of the substitution on P is analogous to that on $\mathrm{N}, r_{\mathrm{V}, \mathrm{PMe}_{2}}=1.88$. From eq $19, r_{\mathrm{V}, \mathrm{PH}}^{2} 2\left(1.80\right.$. Then, $r_{\mathrm{V}, \mathrm{PF}}^{2}$ must lie between 1.80 and 1.88 . We have chosen 1.84 as a reasonable value. ${ }^{k}$ From vox calculated from the equation $v_{\mathrm{OX}}=0.959 \mathrm{~V}_{\mathrm{CH}_{2} \mathrm{X}}-0.100$: Charton, M. J. Org. Chem. 1977, 42, 3531. ${ }^{1} \mathrm{v}_{1 \text {-aziridinyl }}$ must lie between $v_{\mathrm{NH}_{2}}$ and $v_{\mathrm{NM} \mathrm{e}_{2}}$, for which the values are 0.35 and 0.43 , respectively. A reasonable value is 0.39 , which gives, from eq 18 , an r_{V} value of 1.59 . m^{2} From eq 19. ${ }^{n}$ From the reference in footnote $k .{ }^{\circ}$ Calculated from the correlation equation for set 151 and the HSbH angle in SbH_{3} (see footnote b, Table Ill). ${ }^{p}$ Calculated from the correlation equation for set 152 and the MeBiMe bond angle in Me ${ }_{3} \mathrm{Bi}$. Beagley, B.; McAloon, K. T. J. J. Mol. Struct. 1973, 17, 429. ${ }^{q}$ Calculated from the correlation equation for set 01, Table 1.

Figure 1.
Pauling: ${ }^{6}$

$$
\begin{equation*}
r_{\mathrm{VX}}=a_{1} r_{\mathrm{CZ}}+a_{0} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{\mathrm{CZ}}=\left(1 / a_{1}\right) r_{\mathrm{VZ}}-\left(a_{0} / a_{1}\right) \tag{5a}
\end{equation*}
$$

Then

$$
\begin{gather*}
l_{\mathrm{MX}}=b_{1} r_{\mathrm{VX}}+r_{\mathrm{CM}}-\left(a_{0} / a_{1}\right) \tag{6}\\
=b_{1} r_{\mathrm{VX}}+b_{0} \tag{7}\\
b_{1}=1 / a_{1} \tag{7a}
\end{gather*}
$$

where

Table III. Bond Angles and Deviations Obtained with Equation 8

Table III (Continued)

16	Sb(lp)	$\mathrm{Cl}^{\text {a.ll }}$	$\mathrm{Br}^{\text {a }}$.gg	$F^{0 . g g}$	$\mathrm{H}^{\text {a }}$	1 a.ll	$\mathrm{CF}_{3}{ }^{\text {a }}$
		97.0	98.2	95.0	91.30(0.33)	99.1(2)	100.0(3.5)
		97.4	98.2	94.8	91.4	99.1	99.9
		0.4	0	0.2	0.1	0	0.1
31	P, O	MeO	Fa,it	$\mathrm{Cl}^{\text {a.th }}$	Br^{a}	Me ${ }^{a, u}$	PhOr ${ }^{\text {r }}$
		118.4(1.6)	101.3(0.2)	103.3(0.2)	108(3)	104.1(0.6)	104,96.6
		102.3	100.8	105.0	106.2	104.6	105.2
		16.1	0.5	1.7	1.8	0.5	1.2;8.6
32	P, S	$\mathrm{F}^{\text {a }}$	$\mathrm{Cl}^{\text {a.th }}$	Br^{a}	$\mathrm{Me}^{\text {a,uu }}$	Et ${ }^{\text {a }}$	1 -aziridine ${ }^{a, v v}$
		100.3(2)	$101.8(0.2)$	106(3)	104.4(0.2)	107	100(1.7)
		99.3	104.2	105.7	103.7	104.4	101.5
		1.0	2.4	0.3	0.7	2.6	1.5
36	C, H	$\mathrm{F}^{\text {a }}$	$\mathrm{Cl}^{\text {a.ww }}$	Me ${ }^{a, x x}$	H	$\mathrm{Br}^{\text {a }}$	$\mathrm{CF}_{3}{ }^{\nu y}$
		108.8(0.75)	111.3(0.2)	$111.15(0.1)$	109.5	$110.8(0.3)$	112.9(0.2)
		108.8	111.1	110.89	105.8	111.8	113.1
		0.1	0.3	0.3	3.5	0.9	0.2
				2			
set	$\mathrm{M}, \mathrm{X}^{1}$						
33	C, O	$\mathrm{F}^{\text {a }}$		$\mathrm{Cl}^{\text {a }}$	$\mathrm{H}^{\text {bbb }}$		Br
				111.3(0.1)	115.83(0.33)		110(5)
		107		114.3	100.4		116.3
		0.1		3.0	15.4		6.3
				$\mathrm{CF}_{3}{ }^{\text {a } 22}$	NH_{2}		
				121.4(0.4)	117.0(0.3)		
				120.9	109.9		
		3.1		0.5	7.1		
35	$\mathrm{C}, \mathrm{CH}_{2}$			$F^{a, a a a}$	H		
				109.1(0.4)	$117.57(0.5)$	112	114.5(1)
		122		108.1	100.27	114.2	114.9
		1.6		1.0	17.30	2,2	0.4

${ }^{a}$ Included in correlation. ${ }^{b}$ Unless otherwise noted, angle is from Sutton, L. E., Ed. "Tables of Interatomic Distances and Configuration in Molecules and lons", The Chemical Society, London, 1958; "Supplement 1956-1959", c Blukis, W.; Kasai, P. H.; Myers, R. J. Chem. Phys. 1963, 38, 2753. ${ }^{b}$ Beagley, B. Trans. Faraday Soc. 1965, 61, $1821 .{ }^{e}$ Pierce, L.; DiCianni, N. J. Chem. Phys. 1963, 38, 730. Pierce, L.; Jackson, R. H.; DiCianni, N. Ibid. 1961, 35, 2240. Bauer, S. H. Abstracts, 3rd Austin Symposium on Gas Phase Molecular Structure, March 1970; personal communication. ${ }^{g}$ Hencher, J. L.; Bauer, S. H. Can. J. Chem. 1973, 51, 2047. ${ }^{h}$ Lynton, H.; Truter, M. R. J. Chem. Soc. $1960,5112$. ${ }^{i}$ Yow, H. Y.; Rudolph, R. W. J. Mol. Struct. 1975, 28, 205. ${ }^{j}$ Hayashi, M.; Pierce, L. Spectrochim. Acta, Part A 1960, $16,1272 .{ }^{k}$ Linke, K. H.; Lemmer, F. Z. Anorg. Allg. Chem. 1966, 345, 203. Arnold, W.; Dreizler, H.; Rudolph, H. D. Z. Naturforsch. 1964, 19, 1428. Pierce, L.; Nelson, R.; Thomas, C. J. Chem. Phys. 1965, 43, $3423 .{ }^{I}$ Glidewell, C.; Rankin, D. W. H.; Robiette, A. G.; Sheldrick, G. M.; Beagley, B.; Cradock, S. J. Chem. Soc. A 1970, 315. ${ }^{m}$ Hargittai, 1.; Hargittai, M. Acta Crystallogr., Sect. A 1969, 25. 5165. ${ }^{n}$ Kriegsmann, H. Ber. Bunsenges. Phys. Chem. 1957, 61, $1088 .^{\circ}$ Almenningen, A.; Hedberg, K.; Seip, R. Acta Chem. Scand. 1963, 17, 2264. ${ }^{\text {P Berthold, H. J. Z. }}$ Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 1961, 116, 290. ${ }^{\text {a Beecher, J. F. J. Mol. Spectrosc. 1966, 21, 414. r Linke, K. H.; }}$ Lemmer, F. Z. Anorg. Allg. Chem. 1966, 345, 211. s Marsden, C. J.; Sheldrick, G. M. J. Mol. Struct. 1971, 10, 405 . ' Almenningen, A.; $^{\prime}$ Fernhold, L.; Seip, H. M. Acta Chem. Scand. 1968, 22, $51 .{ }^{u}$ Murdock, J. D.; Rankin, D. W. H.; Glidewell, C. J. Mol. Struct. $1971,9,17$. ${ }^{v}$ Hirota, E.; Morino, Y. Bull. Chem. Soc. Jpn. 1960, 33, 158, 705. w Chadwick, D.; Millen, D. J. Trans. Faraday Soc. 1971, 67, 1539. ${ }^{x}$ Lide, D. R., Jr. J. Chem. Phys. 1960, 33, 1514. ${ }^{y}$ Almenningen, A.; Seip, R.; Seip, H. M. Acta Chem. Scand. 1970, 24, 1697. ${ }^{z}$ Truter, M. R. J. Chem. Soc. 1962, 3393, aa Carley, A. J.; Cragg, R. H.; Smith, J. D. Annu. Rep. Prog. Chem., Sect. A 1975, 72, 129. ${ }^{\text {bb }}$ Hargittai, 1. Acta Chem. Scand. 1969, 60, 231. ${ }^{c c}$ Feder, W.; Dreizler, H.; Rudolph, H. D.; Typke, V. Z. Naturforsch. A 1962, 24, 266. ${ }^{d d}$ Beagley, B.; Hewitt, T. G. Trans. Faraday Soc. 1968, 64, 2561. ${ }^{e e}$ Burgi, H. B.; Stedman, D.; Bartell, L. S. J. Mol. Struct. 1971, 10, 31. ff Marsden, C. 1.; Bartell, L. S. J. Chem. Soc., Dalton Trans. 1977, $1581 .{ }^{g 8}$ Kuchitsu, K. MTP Int. Rev. Sci.: Phys. Chem., Ser. One 2, 203. hh Marsden, C. J.; Bartell, L. S. Inorg. Chem. 1976, 15, 2713. ${ }^{i t}$ Vilkov, L. V.; Khaikin, L. S. Zh. Strukt. Khim. 1969, 10, 978. ${ }^{j j}$ Emerson, K.; Britton, D. Acta Crystallogr. 1964, 17, 1134. ${ }^{k k}$ Kroon, J.; Mulscher, J. B.; Peerdeman, A. F. J. Mol. Struct. 1971, 7, 217. "Morino, Y.; Kuchitsu, K.; Moritani, T. Inorg. Chem. 1969, 8, 867. mm Beagley, B.; Robiette, A. G. E.; Sheldrick, G. M. J. Chem. Soc. A 1968, 3006. ${ }^{n n}$ Beagley, B.; Robiette, A. G.; Sheldrick. G. M. Ibid. 1968, 3002. ${ }^{\circ 0}$ Khaikin, L. S.; Vilkov, L. V. Zh. Struct. Khim. 1969, 10, 722. pp Rankin, D. W. H.; Robiette, A. G.; Sheldrick, G. M.; Beagley, B.; Hewitt, T. G. J. Inorg. Nucl. Chem. 1969, 31, 2351. ${ }^{q q}$ Oberhammer, H., private communication cited by reference in footnote i. ${ }^{r}$ Svetich, G. W.; Caughlan, N. C. Acta Crystallogr. 1965, 19, 645. ss Emerson, K.; Britton, D. Ibid. 1963, 16, 113. " Morttani, T.; Kuchitsu, K.; Morino, Y. Inorg. Chem. 1971, 10, 344. uu Wilkins, C. J.; Hagen, K.; Hedberg, L.; Shen, Q.; Hedberg, K. J. Am. Chem. Soc. 1975, 97, 6352. ${ }^{v v}$ Subramanion, E.; Trotter, J. J. Chem. Soc. A 1969, 2309. ww Jen, M.; Lide, D. R. J. Chem. Phys. 1962, 36, 2525. ${ }^{x x}$ Lide, D. R. Ibid. 1960, 33, 1519. yy Andreassen, A. L.; Bauer, S. H. Ibid. 1972, 56, 3802. ${ }^{\text {y }}$ Hilderbrandt, R. L.; Andreassen, A. L.; Bauer, S. H. J. Phys. Chem. 1970, 74, 1586. ${ }^{a a a}$ Laurie, V. W.; Pence, D. T.; Jackson, R. H. J. Chem. Phys. 1962, 37, 2995. ${ }^{b b b}$ Oka, T. J. Phys. Soc. Jpn. 1960, 15, 2274. ${ }^{c c c}$ Bartell, L. S.; Bonham, R. A. J. Chem. Phys. 1960, 32, 824. ddd Laurie, V. W.; Pence, D. T. Ibid. 1963, 38. 2693.
and from eq 3

$$
\begin{equation*}
1 / \sin \left(\theta_{\mathrm{X}} / 2\right)=\left(b_{0} / r_{\mathrm{VX}}\right)+b_{1} \tag{8}
\end{equation*}
$$

It has been argued by Bartell ${ }^{3 a}$ and more recently by Glidewell ${ }^{3 \mathrm{c}}$ that the radii used to estimate bond angles should be half the distance between X groups in suitable model compounds. These radii are termed one-angle radii, r_{A}, and r_{CX} $<r_{\mathrm{Ax}}<r_{\mathrm{VX}}$. We have correlated the r_{A} values reported by Glidewell with the r_{V} values of Bondi ${ }^{7}$ by means of the equa-
tion

$$
\begin{equation*}
r_{\mathrm{AX}}=C_{1} r_{\mathrm{VX}}+C_{0} \tag{9}
\end{equation*}
$$

with excellent results. The statistics are reported in Table I (Set $01)$. They show that r_{AX} is linear in r_{VX} with $C_{1}=1.000$ and $C_{0}=-0.349$. If the proposal of Bartell and Glidewell is correct, then $\overline{\mathrm{XA}}$ is equal to r_{AX} and

$$
\begin{equation*}
1 / \sin (\theta / 2)=l_{\mathrm{MX}} / r_{\mathrm{AX}} \tag{10}
\end{equation*}
$$

From eq 7 and 9 , with $C_{1}=1.00$

$$
\begin{align*}
\frac{1}{\sin \left(\theta_{\mathrm{X}} / 2\right)} & =\frac{\left(b_{0} / B_{1} C_{0}\right)}{r_{\mathrm{VX}}+C_{0}}+b_{1} \tag{11}\\
& =\frac{b_{2}}{r_{\mathrm{AX}}}+b_{1} \tag{12}
\end{align*}
$$

We have examined the correlation ${ }^{8}$ of sets of $1 / \sin \left(\theta_{x} / 2\right)$ values obtained from the XMX bond angles reported in the literature with $1 / r_{V}$ and with (in some cases) $1 / r_{\mathrm{A}}$ values. The r_{V} values for single atoms were taken from the work of Bondi, ${ }^{7}$ or, in the case of polyatomic groups, were $r_{\mathrm{V}, \text { min }}$ values calculated as described in previous work. ${ }^{9}$ The r_{A} values are from Glidewell ${ }^{3 \mathrm{c}}$ or were calculated from eq 9 . As equally good correlations were generally obtained with either r_{V} or r_{A}, we have chosen to use the r_{V} values. The steric parameters used are set forth in Table II. The results of the correlations with eq 8 are given in Table I; those obtained with eq 12 are given in Table I of the supplementary material. The sets studied may conveniently be divided into two classes.

1. The species has tetrahedral geometry according to VSEPR theory. As we are considering only species which include the XMX structural unit, there are three possible subclasses: (A) MX ${ }_{2} \mathrm{X}^{1}{ }_{2}$ where X^{1} is constant and may be a lone pair (lp) or a substituent in all three subclasses; (B) $\mathrm{MX}_{2} \mathrm{X}^{1} \mathrm{X}^{2}$ where X^{2} is a constant substituent; (C) $\mathrm{MX}_{3} \mathrm{X}^{1}$.
2. The species has trigonal planar geometry according to VSEPR theory. Compounds of this type have the structure $\mathrm{MX}_{2} \mathrm{X}^{1}$ where X^{1} is a constant substituent. The data used in the correlations are reported in Table III.

We have examined three sets of type 1 A in which X^{1} is a lone pair with $\mathrm{M}=\mathrm{O}, \mathrm{S}$, and Se (sets $1,2,3$) and one set with X^{1} $=\mathrm{H}, \mathrm{M}=\mathrm{C}$ (set 34). Excellent correlation was obtained for set 1 when $\mathrm{X}=\mathrm{H}$ was excluded. We have also generally excluded from all the correlations bond angles with errors equal to or larger than 3°. The bond angles observed are compared with the calculated bond angles for a number of groups in Table III; with the exception of the values for $\mathrm{X}=\mathrm{H}$ and PF_{2}, all of the calculated values are within 4° of the observed values. Overall, the agreement is excellent. The large deviation of the PF_{2} and H groups will be discussed below. Set 2 also gave an excellent correlation. The value for CN was not included in the correlation as no grounds were available for choosing among the values given in the literature. Good agreement with two of the literature values was obtained. The values for $\mathrm{Cl}_{2} \mathrm{CF}_{3}$, and MeS show a large deviation. Of these, the experimental error reported for the MeS and CF_{3} groups is very large and probably accounts for the discrepancy. The deviation of the Cl value is inexplicable at present. A very large deviation is obtained for the dimethylamino group. This will be discussed below.

Good correlation was obtained for set 3 with deviations less than 3° for all groups except CN . It must be noted that another value of the bond angle has been reported for CF_{3}; the deviation from this value is large. Excellent results were obtained for set 34 with deviations less than 2° except for $\mathrm{X}=\mathrm{H}$.

Two sets of type 1 B were studied, with $\mathrm{M}=\mathrm{P}, \mathrm{X}^{1}=1 \mathrm{p}, \mathrm{X}^{2}$ $=\mathrm{PX}_{2}($ set 21$)$ and with $\mathrm{M}=\mathrm{S}, \mathrm{X}^{1}=1 \mathrm{p}, \mathrm{X}^{2}=0$ (sets 21 and 22). Significant correlations with eq 8 resulted. The observed angles are generally in excellent agreement with the calculated angles shown in Table 11I.
Seven sets of type 1 C have been examined. In five of these, the "constant substituent" is a lone pair (sets 13-16). M is N , P, As, and Sb , respectively. Significant correlations were obtained with eq 8 for all four sets. Comparison of calculated and observed bond angles for set 13 shows good agreement for all X other than $\mathrm{Me}, \mathrm{Et}, \mathrm{H}$, and SiH_{3}. The deviation of the Et angle is not unexpected in view of the large reported error. The deviation of the Me value is surprising. In the case in which X $=\mathrm{H}$ or SiH_{3}, the size of the deviation clearly shows that this
angle does not fit a steric model. Some other factor or factors must be involved. For set 14, very good agreement is obtained for all groups except $\mathrm{CN}, \mathrm{CF}_{3}$, and SiH_{3}, which do not fit the model, and NMe_{2}, which shows very large deviations. In set 15 , only CN and SiH_{3} deviated greatly. All of the members of set 16 gave excellent agreement between calculated and observed angles.

Of the three other sets of type 1 C (sets 36,31 , and 32 ; the constant substituent is H, O, and S , respectively) two gave significant correlation with eq 8 . The failure of set 31 to give significant results is probably due to the lack of a sufficient number of points in the set and the small range of $1 / r_{V X}$ covered by the available points. For set 36 , where $\mathrm{X}^{1}=\mathrm{H}$ and M $=\mathrm{C}$, the only deviation is for $\mathrm{X}=\mathrm{H}$; otherwise agreement between calculated and observed values is excellent. For set 32 , where $X^{1}=S$ and $M=P$, calculated and observed values are in good agreement for all points. Even in set 31, which did not give a significant correlation, the agreement between calculated and observed values is very good, with the exception of one of the angles reported for $\mathrm{X}=\mathrm{OPh}$ in an X -ray study in which two widely divergent angles were found.

Finally, two sets of type 2 were studied (sets 33 and 35 with $\mathrm{X}^{1}=\mathrm{O}$ and CH_{2}, respectively). Both sets give significant correlations with eq 8 . In set 33 , major deviations were observed for $\mathrm{X}=\mathrm{NH}_{2}, \mathrm{Br}$, and H . In the case of the NH_{2} group, the angle was determined in an X -ray diffraction study and the large deviation may be due to intermolecular hydrogen bonding in the crystal. The large deviation observed when $\mathrm{X}=\mathrm{Br}$ is reasonable in view of the large experimental error reported in the determination of the angle. The deviation obtained when $\mathrm{X}=\mathrm{H}$ shows that in this case the steric effect model is obviously inapplicable and again some other factor or factors must be involved. All of the members of set 35 give very good agreement between calculated and observed bond angles except the H atom. Here once again, the model fails completely.

We may now consider the variation of $\angle \mathrm{XMX}$ as a function of M. From eq 4 and 5 a with X constant

$$
\begin{equation*}
l_{\mathrm{MX}}=b_{1} r_{\mathrm{VM}}+b_{0}^{\prime} \tag{13}
\end{equation*}
$$

where $b_{0}{ }^{\prime}$ is $r_{\mathrm{CX}}-\left(a_{0} / a_{1}\right)$. Then from eq 3 and 13

$$
\begin{equation*}
1 / \sin \left(\theta_{\mathrm{X}} / 2\right)=\frac{b_{1} r_{\mathrm{VM}}+b_{0}^{\prime}}{r_{\mathrm{VX}}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
1 / \sin \left(\theta_{\mathrm{X}} / 2\right)=d_{1} r_{\mathrm{VM}}+d_{0} \tag{15}
\end{equation*}
$$

We have examined the correlation of bond angles for sets (with constant X) of compounds of the type $\mathrm{MX}_{n}(\mathrm{lp})_{4-n}$ with $n=2$ or 3 . The results of the correlations are reported in Table I. The van der Waals radii used were taken from Bondi's compilation with the exception of the values for Sb and for Bi . The value of r_{V} for Sb was calculated from the correlation equation obtained for $\mathrm{X}^{1}=\mathrm{Me}$ (set 152). Values of r_{VM} are given in Table II. Eight sets have been correlated with eq 15, all with significant results. Calculated and observed bond angles are compared, in Table.IV. When $\mathrm{X}=\mathrm{H}$, excellent agreement is obtained between calculated and observed angles for all M except O and N. The very large deviation obtained for O and N confirms the conclusion from the correlations with eq 8 that some factor or factors other than steric effects must be involved in determining these angles. Excellent agreement was also obtained for all M when $\mathrm{X}=\mathrm{Me}, \mathrm{F}, \mathrm{I}$, and $4-\mathrm{ZC}_{6} \mathrm{H}_{4}$ (sets $152,153,157$, and 161). In the latter case Z may be Me , I, H, or Br . No significant electrical effect of Z on the angle is detectable. When X is Cl (set 154) all M but S and Bi give very good agreement between calculated and observed angles. The deviation in the case of Bi is undoubtedly due to the large experimental error. That observed for S is in agreement with the results of the correlation with eq 8 for $\mathrm{X}_{2} \mathrm{~S}$. The calculated

Table 1V. Bond Angles and Deviations Obtained with Equation 15^{c}

set	X	M	O	N	\mathbf{P}^{a}	$\mathrm{As}^{\text {a }}$	$\mathrm{S}^{\text {a }}$	
151	H	Lobsd	104.52	106.69	93.3(0.2)	91.83(0.33)	92.25	
		$L_{\text {calcd }}$	96.44	96.01	92.6	91.97	92.62	
		Δ	8.1	10.7	0.7	0.1	0.4	
			Se^{a}	Te ${ }^{\text {a,b }}$				
			$91.0(0.6)$	89.5				
			91.3	89.4				
			0.3	0.1				
152	Me	As	N^{a}	p^{a}	$\mathrm{O}^{\text {a }}$	S^{a}	Se^{a}	
		96(5)	110.6(0.6)	98.6	111.72(0.33)	98.90(0.2)	96.2(0.2)	
		97.4	110.3	99.2	111.82	99.23	95.6	
		1.4	0.3	0.6	0.1	0.3	0.6	
153	F		N^{a}	$\mathrm{P}{ }^{a}$	As ${ }^{\text {a }}$	$\mathrm{Sb}^{\text {a }}$	$\mathrm{O}^{\text {a }}$	
			102.5(1.5)	97.8	96.1(0.2)	95.0	103.3	
			102.7	97.3	96.4	95.3	103.4	
			0.2	0.5	0.3	0.3	0.1	
154	Cl	S	$\mathrm{N}^{\text {a }}$	$\mathrm{P}{ }^{\text {a }}$	As ${ }^{a}$	$\mathrm{Sb}^{\text {a }}$	O^{a}	
		103	107.1(0.3)	100.3	98.4(0.5)	97.0	110.8(1.)	$100(6)$
		100.1	108.5	100.1	98.6	97.1	109.7	98.0
		2.9	1.4	0.2	0.2	0.1	1.1	2.0
155	CF_{3}	N^{a}	P	As ${ }^{\text {a }}$	Sb^{a}	$\mathrm{O}^{\text {a }}$		
		114(3)	97.2(0.7)	100.1(3.5)	100.0(3.5)	124.0(0.6)		
		117.8	103.0	100.6	98.3	120.0		
		3.8	5.8	0.5	1.7	4.0		
		S	Se					
		$105.6(3)$	$97.0(2)$					
		103.0	98.3					
		2.6	1.3					
156	Br	P	As	$\mathrm{Sb}^{\text {a }}$	$\mathrm{Bi}^{\text {b }}$	Te ${ }^{\text {b }}$		
		101.5	99.66(0.26)	98.2	100(4)	98(3)		
		101.4	99.73	98.1	99.1	93.3		
		0.1	0.1	0.1	0.9	4.7		
157	1	P^{a}	As ${ }^{\text {a }}$	$\mathrm{Sb}^{\text {a }}$				
		102	100.2(0.4)	99.1(2)				
		101.9	100.4	99.0				
		0.1	0.2	0.1				
$\left(4-\mathrm{ZC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{M}^{b}$								
161	Z, M	$\mathrm{Me}, \mathrm{S}^{\text {a }}$	$\mathrm{Me}, \mathrm{Se}^{a}$	$\mathrm{Me}, \mathrm{Te}^{a}$	$1, \mathrm{O}^{a}$	$\mathrm{H}, \mathrm{N}^{a}$	Br, S	
		109(1.9)	106(2)	101(2.7)	118(3)	116(2)	109.5	
		108.6	105.8	101.6	117.9	116.8	108.6	
		0.4	0.2	0.6	0.1	0.8	0.9	

${ }^{a, b}$ See Table 111. ${ }^{c}$ Sources of all bond angles are reported in Table 111 unless otherwise noted.
angle from eq 8 is 98.3°, and from eq 15 is 100.1°. The observed value of 103.0° is inexplicably larger. When $\mathrm{X}=\mathrm{CF}_{3}$, a larger deviation than usual is the result. The largest deviation is for P. The angle calculated from both eq 8 and eq 15 for $\mathrm{P}\left(\mathrm{CF}_{3}\right)_{3}$ is 103.0°. We are unable to account for the very large discrepancy. Large deviations were also obtained for N and O. In the case of $\mathrm{N}\left(\mathrm{CF}_{3}\right)_{3}$ calculated values are 112.8 and 117.8° (from eq 8 and 15 , respectively). Thus, the observed value lies between the calculated values. In the case of O, the values calculated from eq 8 and 15 are 120.5 and 120.0°, in very good agreement with each other. When $\mathrm{X}=\mathrm{Br}$, excellent agreement between calculated and observed bond angles is obtained except for Te . Since the experimental error is fairly large, this is not surprising.

From our results we can conclude that some other nonsteric factor (or perhaps factors) is responsible for the HMH angle when M is a second-period element. This factor cannot be repulsion between the comparatively unshielded H nuclei as the $\mathrm{H}-\mathrm{H}$ distance should be about the same in all compounds which fit the model. A possible explanation is that, owing to the short MH bond length for $\mathrm{M}=\mathrm{O}, \mathrm{N}$, and C , the electron density in the MH bond is much greater than in other MX bond lengths. Thus, for $\mathrm{HOH}, \mathrm{HNH}$, and HCH , electrostatic repulsion between bonding pairs would be greater than usual and could compete more effectively with lone pair-bond pair and lone pair-lone pair interactions.

The XMX angles in $\mathrm{MX}_{n}(\mathrm{lp})_{3-n}$ where $n=2$ or 3 and X
has the form WZ_{3} with $\mathrm{W}=\mathrm{Si}, \mathrm{Ge}$, and Sn are of considerable interest. When $\mathrm{M}=\mathrm{O}$ or N , the angle is much larger than that calculated on the basis of steric effects alone. These angles are explicable in terms of $\mathrm{d} \pi-\mathrm{p} \pi$ bonding involving the lone pairs on N and O . The decreased electron density should result in a decreased repulsion betweeen the lone pair and bonding pairs. This would cause a larger angle. The large deviations observed for the PF_{2} group in $\mathrm{O}\left(\mathrm{PF}_{2}\right)_{2}$ and $\mathrm{MeN}\left(\mathrm{PF}_{2}\right)_{2}$ are also in agreement with this argument. As expected, $\mathrm{CH}_{2}\left(\mathrm{SiH}_{3}\right)_{2}$ showed no significant deviation; large deviations were not observed for SX_{2} with $\mathrm{X}=\mathrm{SiH}_{3}, \mathrm{SiMe}_{3}$, or GeH_{3}. $\mathrm{Se}\left(\mathrm{SiH}_{3}\right)_{2}$ did not give a significant deviation. Large deviations were observed, however, for trisilyl- and trigermylphosphane and for trisilylarsane. In all cases, the observed angles are much smaller than the calculated angles. This could result from an increased electron density on the lone pair orbital on P or As. We cannot propose any reason for this to occur in the case of P and As but not in that of S or Se .

We have observed that PX_{3} when $\mathrm{X}=\mathrm{OZ}$ or NMe_{2} and $\mathrm{S}\left(\mathrm{NMe}_{2}\right)_{2}$ show very large deviations. In all cases the observed angle is very much larger than the calculated angle. This phenomenon does not occur in $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{SO}$ or in $\mathrm{X}_{3} \mathrm{PY}$ with $\mathrm{X}=1$-aziridinyl, $\mathrm{Y}=\mathrm{S}$, or $\mathrm{X}=\mathrm{OPh}, \mathrm{Y}=\mathrm{O}$. It does occur when $\mathrm{X}=\mathrm{OMe}, \mathrm{Y}=\mathrm{O}$. The failure of the steric model in PX_{3} and SX_{2} might be due to any combination of the following: (1) decreased electron density in the lone-pair orbital on P or S ; (2) increased electron density in the PX or SX bond.

Table V. Results of Correlations with Equations 16, 17a, and 17b

se1	slope	intercept	r^{a}	F^{b}	$s_{\text {est }}{ }^{d}$	$s_{\text {slope }}{ }^{d}$	$s_{\text {int }}{ }^{d}$	$100 r^{2 d}$
011	-0.714	1.577	0.8882	18.68^{j}	0.0644	0.1651^{j}	0.292^{j}	78.88
011 A	-0.389	0.976	0.9814	104.6	0.0111	0.0381	0.00687	96.32
021	-0.660	0.688	0.8271	10.82^{g}	0.0603	$0.1^{j} 1^{h}$	0.122^{j}	68.40
022	1.478	-0.0987	0.8802	17.19^{j}	0.107	0.3571^{j}	0.217^{n}	77.47

$a-m$ See Table 1. ${ }^{n} 20 \%$ CL.

Although the central atoms which show this behavior have empty d orbitals available for π bonding, and the X groups involved have lone pairs capable of interacting with such orbitals, no clear connection between $\mathrm{d} \pi-\mathrm{p} \pi$ bonding and the observed deviations can be made. The P atoms in PF_{3} also have d orbitals available for bonding, yet the observed angles fit the steric model very well. There is a third possible explanation, that $\mathrm{d} \pi-\mathrm{p} \pi$ bonding results in a change in the effective van der Waals radius of the OZ or NMe_{2} group. Such π bonding would result in decreased rotation of the PX bond.

We have obtained values of a_{1} and a_{0} in another investigation. From these results we find $1 / a_{1}=1.236\left(a_{0} / a_{1}\right)=113.5$. From these results we predict that all of the correlations obtained with eq 8 should have an intercept of 1.236. In fact they are all in the range $0.872-1.211$, in reasonable agreement with this prediction. When we attempt to calculate values of b_{0} from eq 7a, we do not find agreement between the calculated values and those obtained from the correlations. Obviously some other factor is present. Equation 7a predicts a linear relationship between b_{0} and r_{VM}. Thus, from eq 5 a and 7 a

$$
\begin{equation*}
b_{0}=b_{1} r_{\mathrm{VM}}-2\left(a_{0} / a_{1}\right)=b_{1} r_{\mathrm{VM}}+b_{11} \tag{16}
\end{equation*}
$$

Equation 16 is in fact obeyed. Results of the correlation are given in Table V (set 011). The results are improved by omission of the b_{0} value for $\mathrm{M}=\mathrm{O}$ (set 011A). Sets studied are 1, $2,3,13,14,15$, and 16 with $\mathrm{M}=\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{N}, \mathrm{P}, \mathrm{As}$, and Sb , respectively. From eq 14 and 15

$$
\begin{align*}
& d_{1}=b_{1} / r_{\mathrm{VX}} \tag{17a}\\
& d_{0}=b_{0}{ }^{\prime} / r_{\mathrm{VX}} \tag{17b}
\end{align*}
$$

and we predict linear relationships between d_{1} and $1 / r_{\mathrm{VX}}$, and between d_{0} and $1 / r_{V x}$. Correlations with eq 17 a and 17 b give significant results. The statistics are reported in Table V (sets 021 and 022 , respectively). The d_{1} and d_{0} values are from sets 151-157 with $\mathrm{X}=\mathrm{H}, \mathrm{Me}, \mathrm{F}, \mathrm{Cl}, \mathrm{CF}_{3}, \mathrm{Br}$, and I, respectively. Our results may be summarized as follows:

1. Fourteen of the 15 sets correlated with eq 8 gave significant results. All of the eight sets correlated with eq 15 gavesignificant results. The b_{0} values are correlated by eq 16 ; the d_{1} and d_{0} values by eq 17 a and 17 b . The b_{1} values are in good agreement with the predicted value. It seems certain that, whereas the gross geometry of a classical species can be very well described by VSEPR theory, the actual bond angles are generally dependent on steric effects.
2. These conclusions have been demonstrated in tetrahedral and trigonal planar species. They are probably equally applicable to trigonal bipyramidal and octahedral species.
3. Substituents which can interact with a lone pair on the actual atom by $\mathrm{d} \pi-\mathrm{p} \pi$ bonding will not obey the steric model proposed here.
4. H atoms bonded to O, N, or C do not obey the steric effect model.
5. The van der Waals radii are satisfactory steric parameters for single-atom substituents. For polyatomic X, the group van der Waals radii are effective.
6. The correlation equations obtained permit the calculation of bond angles for a range of species of interest.
7. Bond angles measured by X-ray diffraction may show deviations resulting from the intermolecular forces in the crystal.
8. Coppens ${ }^{10}$ has reported that in a system, YMX_{2}, where X is constant the angle XMX is a function of Y . This point supports our arguments as to the steric nature of the XMX angle. We will examine this type of system in the next paper of this series.

Acknowledgment. We would like to thank L. S. Bartell for pointing out the work of Coppens.

Supplementary Material Available: Results of correlations with eq 8 (1 page). Ordering information is given on any current masthead page.

References and Notes

(1) (a) Gillespie, R. J. J. Am. Chem. Soc. 1960, 82, 5978. (b) Gillespie, R. J. "Molecular Geometry"; Van Nostrand-Reinhold: Princeton, N.J., 1972. (c) Gillespie, R. J. J. Chem. Educ. 1974, 51, 367.
(2) (a) Searcy, A. W. J. Chem. Phys. 1958, 28, 1237. (b) Ibid. 1959, 31, 1.
(3) (a) Bartell, L. S. J. Chem. Phys. 1960, 32, 827. (b) J. Chem. Educ. 1968, 45, 755. (c) Glidewell, C. Inorg. Chim. Acta 1975, 12, 219 . (d) lbid. 1976, 20, 113.
(4) Wilson, E. B., Jr. Tetrahedron 1962, 17, 191.
(5) Charton, M., unpublished results.
(6) Pauling, L. "The Nature of the Chemical Bond", 3rd ed.; Cornell University Press: Ithaca, N.Y., 1960; p 263.
(7) Bondi, A. J. Phys. Chem. 1964, 68, 4441.
(8) Correlations were carried out by simple linear regression analysis. No attempt was made to weight the points in accord with the errors in the data.
(9) Charton, M. J. Am. Chem. Soc. 1969, 91, 615. Prog. Phys. Org. Chem. 1971, 8, 235.
(10) Coppens, P. J. Chem. Phys. 1962, 36, 2523.

